

Stormwater BMPs at IEUA's LEED™ Platinum Headquarters

Eliza Jane Whitman, P.E. Deputy Manager of Engineering

IEUA Headquarters Project

Phase I

- Total Site Acreage: 35 acres
- •H.Q. Acreage 14 acres
- •Two 33,000 s.f. buildings

Kimball Ave.

L.E.E.D.:

An *Integrated* Approach to the Design, Construction, and Operation of New Buildings

- J Electricity consumption
- J Potable water use
- J Stormwater infiltration and control
- J Raw material usage (recycled products)
- J Construction activities
- J Indoor Environmental/Air Quality

3

Internal LEED concerns:

- J no contractors would bid LEED too new
- J costs would be prohibitive
- J recycled materials would fall apart
- J skylights would leak
- J carpet tiles would ravel
- J paints would peel
-) construction schedule would be missed
- J stormwater won't perk mosquito farm
- J foundation will be ruined
- J gophers will eat the drip irrigation
- J "cool roof" material too new

The Headquarters Building RFP

- $\int D/B time was of the essence$
- J LEED Conference: 'To have a successful project you need to get the Contractor on board'
- J Established three bid prices (base, gold, and platinum)
- J Matrix of points provided flexibility for Contractor/Architect to select building elements to design and construct
- J LD's and Incentives associated with LEED activities and schedule

5

Why LEED Made \$ense to us in 2001...

- J We produce recycled water it is our 'product'!
- J MWD's message: "60% of potable water consumed is outside"
- J We generate waste heat We had a \$2.1 million DOE grant...
- J In the middle of an energy crisis -design a bldg consuming the least amount of energy possible (lighting, etc.)
- J Evaluating stormwater infrastructure can potentially save money

LEED 'Extras' – Providing Regional Leadership in 2001

J Recycled materials (carpets, partitions, furniture, etc.)
J Low VOC paints, glues, etc.
J PV
J 'Cool' roof
J Stormwater treatment
J Porous concrete and other permeable pavements
J Bus stop
J Hybrid & electric vehicles

7

Why We Were Successful: An Engineering Approach – Estimate Economic Benefits First

- Addressed technical issues held a stormwater charrette with experts
- J Hired an experienced Energy Consultant (CTG Energetics) to evaluate savings/lifecycle costs: *Photovoltaics (PV); Absorption chillers; Lighting and skylights* Energy savings could result in up to 60% better than Title 24 requirements
- J Compared typical costs for administration buildings across the Country \$180 to \$280/ sf
- J Researched productivity claims and benefits –to quantify and put a value to it Productivity can increase by 26% (1999 California Board for Energy Efficiency Program Report -CPUC funded)

Why We Were Successful: Fully Coordinated Design-Build Team

- J Determine LEED Certification goals
- J Decide which points achievable
- J Decide who will be responsible
- J Establish comprehensive schedule

Project	Name: Inland Empire Utilities Agency - Design Build	30	3 %	П			П
Credit ID	Credit Title	Coults	PLATINU M Score			Ш	MIL
TOTAL	Platinum 52 :: Gold 39 :: Silver 33 :: Certified 26	69	52	(Done)	ATIN.	ACCEPTABL	or Amus
LEGEND:	Light Gray Background = Primary Credits. BLACK Background = Secondary or	Options	Credi	11	39	뷶	14
	IALS AND RESOURCES (MR)	13	6				
	Storage and Collection of Recyclables	-	Ť		-		Ti
	ourige and companion or recipients	PRE	PRE	×			0 8
MR.C01.1	Building Reuse, Maintain 75% of Existing Shell	1	n/a	-	-		XI
MR.C01.2	Building Reuse, Maintain 100% of Existing Shell	1	n/a		т		X
MR.C01.3	Building Reuse, Maintain 100% of Existing Shell and 50% of Non-Shell	1	nia				×
MR.C02.1	Construction Waste Management, Salvage/Recycle 50%	1	1		×	П	
MR.C02.2	Construction Waste Management, SalvagerRecycle 75%	1	1		×	П	
MR.C03.1	Resource Reuse, Specify 5%	1	rv'a				X
MR.C03.2	Resource Reuse, Specify 10%	1	ri/a				X
MR.C04.1	Recycled Content, Specify 25%	1	1	П	X	П	
MR.C04.2	Recycled Content, Specify 50%	1	1	П	×	П	1
MR.C05.1	Local/Regional Materials, 20% Manufactured Locally	1	1		×	П	1
MR.C05.2	Local/Regional Materials, 50% Harvested/Extracted/Recovered Locally	1	n/a			П	ΧI
MR.CDS	Rapidly Renewable Materials	1	n/a	П	Т	x	
MR.C07	Certified Wood	1	1	П	x	П	
INDOO	R ENVIRONMENTAL QUALITY (EQ)	15	9				
EQ.P01	Minimum IAQ Performance	PRE	PRE	X			- 14
EQ.P02	Environmental Tobacco Smoke (ETS) Control	PRE	PRE	X			
EQ.C01	Carbon Dioxide (CO2) Monitoring	1	m'a			X	
EQ.C02	Increased Ventilation Effectiveness	1	n/a			П	X
EQ.C03.1	Construction IAQ Management Plan, During Construction	1	1		X		
	Construction IAQ Management Plan, After Construction	1	11		X		
EQ.C04.1	Low-Emitting Materials, Adhesives and Sealants	1	1	x	x	П	
EQ.C04.2	Low-Emitting Materials, Paints	1	1		X	П	7
EQ.C04.3	Low-Emitting Materials, Carpet	1	1		X		
EQ.C04.4	Low-Emitting Materials, Composite Wood	1	1			X	
EQ.COS	Indoor Chemical and Pollution Source Control	1	1		x	П	
EQ.C06.1	Controllability of Systems, Operable Windows	1	n/a				×
EQ.C06.2	Controllability of Systems, Individual Controls	1	nia		_		XI

9

Why We Were Successful "Nothing Fancy"

- Tilt-up concrete (low technology) building type
- Off the shelf items/ standard sizes nothing special made
- Most economical building envelope
- Panelized building system

Why We Were Successful Construction Phase Had a LEED Action Plan

- J Contractor/subcontractor preconstruction meetings
- J Keep green material tracking sheets current
- J Mid project audit of LEED progress
- Photographs: required for USGBC submittal Submittal review for LEED conformance
- J Material staging and pre-installation approvals for green products
- J Continual worker education on LEED

Covered HVAC ducts in conformance with EQ credit 3.1.

11

LEED Platinum Analysis Results

Capital costs

J Saved over \$1.4 million on stormwater infrastructure

O&M costs

J Saving hundreds of thousands on electricity costs annually

Life-cycle costs

- J Increased capital costs for energy related equipment for base bid versus Platinum bid -(115kW consumption during peak summer period)
- J Increased costs based on productivity increases result in a **3.3** year payback period (CPUC funded study).

Schedule

J Platinum certification does not add time to the contract

Stormwater Element Design Objectives

- J Break even as it relates to costs
- J Build a BMP parking lot—implement what others have not been able to do (*LACDPW*)
- J Minimize stormwater runoff
- J Increase on-site infiltration and reduce contaminants flowing to Chino Creek
- J Meet U.S. Green Building Council 2.0 LEEDTM manual's criteria for post project conditions:
 - J SS.C06.1 (involves **the rate or quantity** of stormwater)
 - J reduce the "C" value by 25%, capture 85% of the total runoff
 - J SS.C06.2 (involves the treatment of stormwater)
 - $\ensuremath{\mathsf{J}}$ remove 80% TSS and 40% TP of the post-project's annual nutrient loading

Challenging 'New Development' Requirements

- J 2001 Stormwater Charette involvement was key for receiving City's approval for modifications
- J SB Co currently the most strict in stormwater regs in So. Cal.
- J IEUA saved ratepayers \$1,417,322 on stormwater project elements alone!
 - **J** Alternative paving materials
 - J No curb & gutter
 - **J** Storm drain size reduction
 - **J** Elimination of box culvert to Chino Creek

15

2.0 LEED Stormwater Requirements

Criteria SS.C06.1

 No increase in net imperviousness of the project site – Pre-condition (dairy) vs post-condition (HQ)

J Accomplishment

J The imperviousness percentage of the site was reduced from runoff coefficient C=0.75 to C=0.56

Criteria SS.C06.2

J Removal of approximately 80% of the average annual post-project Total Suspended Solids (TSS) and 40% of the average annual post project Total Phosphorous (TP)

J Accomplishment

J Removed 89% of the average annual postproject TSS and 40% of the average annual phosphorous*

NOTE:

For purposes of this study, the "pre-project" condition refers to the site's condition prior to project construction (dairy). The "post-project" condition reflects project completion. (Theoretical value for phosphorous)

Reduce On-site Runoff Coefficient

<u>Infiltrate!</u>

J Pervious pavement
 J No curb & gutter
 J Swales
 J Detention basins
 J Perforated pipe (!) for storm drains

- J Conservation and creation of Natural Areas
- J Natural Drainage System

No Curb/Gutter

- Water sheet flows across the site allotting ample time for detention, infiltration, and retention
- J Encourages drainage as a design element textures and colors were used to delineate walkways, landscaping, parking aisles, and driveways
- **J** Utilizes natural drainage
- J Reduces use of curbs saving \$252,200

19

Swales

- On and off site storm water is treated naturally via swales, wetlands, and native vegetation
- J Provide opportunity for runoff to naturally infiltrate
- J Easily integrated into site design
- J Reduces stormwater velocities
- J Swales enhance overall project aesthetics
- J No ponding within 24 hours after ALL 2004/05 rainy season events (calls from the Architect to make sure it worked!)

Detention Basins

- J Sized to detain a 25 year storm event on-site
- J Sized to detain water quality volume
- Assisted in the prevention of downstream flooding (El Prado Rd)
- J Decreased pollutant loading
- J Assisted in ground water recharge
- J Encouraged natural resources and ecosystems

Restoring the Natural Drainage Engineered drainage system mimics natural systems

- J Assumed a watershed perspective
- J City of Chino SW Master Plan's 10'X10' box culvert to convey off-site flows to Chino Creek was eliminated (\$1.4 M savings!)
- **J** Receives off-site storm flows previously directed from a 24" pipe into Chino Creek.

First seasonal storm event resulted in immediate improvements to the water quality of Chino Creek.

BMP Parking Lot Savings

Design (see website)

- J Traditional Box culvert (\$1.2 M) Storm drains/ curb & gutter
- J Agency Operational cost savings Car washing allowed on site currently saving over \$18,000/ year . Potential of over \$140,000/year)

Other

- J Future savings to region Stormwater quality in Chino Creek/ SW runoff in City of Chino
- J Developer savings paved way with the City

25

Water Quality Empirical Data for Pollutant Removal (Assessment of BMP Effectiveness)

2004/05 Rainy Season Sampling

- J TSS was reduced by 89% (exceeding 80% required by LEED) TM
- J Total Coliform was reduced by 95%
- **J** Fecal Coliform was reduced by 84%
- **J** 80% of the 30 constituents that were tested resulted in removals ranging from 74% up to 95%.
- J Traditional method would have dumped into Chino Creek over the next 20 years:
 - J Over 6 pounds of microbial bacteria, 1,600 pounds of oil & grease, 2,400 pounds of Nitrogen
 - **J** A total of two million pounds of organic and inorganic constituents

Stormwater Design Conclusions | Pre-planning is critical | | Concerns of critics need to be addressed (they may become your greatest supporter!) | | Some 'faith' is needed | | Drainage components can be used as a design element | | Environmentally sound landscaping and site design can be done cost effectively | | All savings (future) are not yet realized |

